Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 71(3): 916-928, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37801375

RESUMO

OBJECTIVE: Viscoelasticity is mapped by dispersion in shearwave elastography. Incomplete spectral information of shearwaves is therefore used to estimate mechanical stiffness. We propose capturing the "full-waveform-information" of the shear wave spectra to better resolve complex shear modulus µ* (ω). Approach is validated on phantom models, animal tissues, and feasibility demonstrated on human post-delivery placenta. METHODS: We captured robust estimates of µ* in ex-vivo livers subjected to water bath ablation, glutaraldehyde exposure and in the placenta. RESULTS: Complex modulus at 200 Hz is more reflective of tissue stiffness than cross-correlation estimate. Bias increased in phantoms with higher gelatin (G) (0.65: 6% G) and oil (O) (0.58: 6% G and 40% O) concentration, compared to elastic phantoms with low stiffness (0.33: 3% G). Actual tissues also reported higher bias in cross-correlation estimate (rabbit liver: 0.61, porcine liver: 2.20, and human placenta: 0.63). Stiffness is sensitive to ablation temperature, where the overall modulus changed from 3.02 KPa at 16 °C to 2.75 KPa at 56 °C in water bath. With exposure to Glutaraldehyde, the overall modulus increased from 2.37 to 9.03 KPa. Reconstruction errors in the loss modulus decreased by 68% with the power law compared to a Maxwell model in porcine livers with Cole-Cole inverse fitting. CONCLUSION: Omitting Shear wave attenuation leads to bias. Reconstruction of rheological response with a model is sensitive to its architecture and also the framework. SIGNIFICANCE: We use "full spectral information" in ultrasound shear wave elastography to better map µ*(ω) changes in viscoelastic tissues.


Assuntos
Técnicas de Imagem por Elasticidade , Humanos , Animais , Suínos , Coelhos , Glutaral , Ultrassonografia , Técnicas de Imagem por Elasticidade/métodos , Viscosidade , Imagens de Fantasmas , Análise Espectral , Água
2.
Artigo em Inglês | MEDLINE | ID: mdl-34986096

RESUMO

Imaging tissue mechanical properties has shown promise in noninvasive assessment of numerous pathologies. Researchers have successfully measured many linear tissue mechanical properties in laboratory and clinical settings. Currently, multiple complex mechanical effects such as frequency-dependence, anisotropy, and nonlinearity are being investigated separately. However, a concurrent assessment of these complex effects may enable more complete characterization of tissue biomechanics and offer improved diagnostic sensitivity. In this work, we report for the first time a method to map the frequency-dependent nonlinear parameters of soft tissues on a local scale. We recently developed a nonlinear elastography model that combines strain measurements from arbitrary tissue compression with radiation-force-based broadband shear wave speed (WS) measurements. Here, we extended this model to incorporate local measurements of frequency-dependent shear modulus. This combined approach provides a local frequency-dependent nonlinear parameter that can be obtained with arbitrary, clinically realizable tissue compression. Initial assessments using simulations and phantoms validate the accuracy of this approach. We also observed improved contrast in nonlinearity parameter at higher frequencies. Results from ex-vivo liver experiments show 32, 25, 34, and 38 dB higher contrast in elastograms than traditional linear elasticity, elastic nonlinearity, viscosity, and strain imaging methods, respectively. A lesion, artificially created by injection of glutaraldehyde into a liver specimen, showed a 59% increase in the frequency-dependent nonlinear parameter and a 17% increase in contrast ratio.


Assuntos
Técnicas de Imagem por Elasticidade , Anisotropia , Elasticidade , Técnicas de Imagem por Elasticidade/métodos , Imagens de Fantasmas , Viscosidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-34236961

RESUMO

The acoustic radiation force impulse (ARFI) has been widely used in transient shear wave elasticity imaging (SWEI). For SWEI based on focused ARFI, the highest image quality exists inside the focal zone due to the limitation of the depth of focus and diffraction. Consequently, the areas outside the focal zone and in the near field present poor image quality. To address the limitations of the focused beam, we introduce Bessel apodized ARFI that enhances image quality and improves the depth of focus. The objective of this study is to evaluate the feasibility of SWEI based on Bessel ARF in simulation and experiment. We report measurements of elastogram image quality and depth of field in tissue-mimicking phantoms and ex vivo liver tissue. Our results demonstrate improved depth of field, image quality, and shear wave speed (SWS) estimation accuracy using Bessel push beams. As a result, Bessel ARF enlarges the field of view of elastograms. The signal-to-noise ratio (SNR) of Bessel SWEI is improved 26% compared with focused SWEI in homogeneous phantom. The estimated SWS by Bessel SWEI is closer to the measured SWS from a clinical scanner with an error of 0.3% compared to 2.4% with a focused beam. In heterogeneous phantoms, the contrast-to-noise ratios (CNRs) of shallow and deep inclusions are improved by 8.79 and 3.33 dB, respectively, under Bessel ARF. We also compare the results between Bessel SWEI and supersonic shear imaging (SSI), and the SNR of Bessel SWEI is improved by 8.1%. Compared with SSI, Bessel SWEI shows more accurate SWS estimates in high stiffness inclusions. Finally, Bessel SWEI can generate higher quality elastograms with less energy than conventional SSI.


Assuntos
Técnicas de Imagem por Elasticidade , Acústica , Elasticidade , Imagens de Fantasmas , Razão Sinal-Ruído
4.
IEEE Trans Med Imaging ; 39(11): 3559-3570, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32746104

RESUMO

The goal of non-linear ultrasound elastography is to characterize tissue mechanical properties under finite deformations. Existing methods produce high contrast non-linear elastograms under conditions of pure uni-axial compression, but exhibit bias errors of 10-50% when the applied deformation deviates from the uni-axial condition. Since freehand transducer motion generally does not produce pure uniaxial compression, a motion-agnostic non-linearity estimator is desirable for clinical translation. Here we derive an expression for measurement of the Non-Linear Shear Modulus (NLSM) of tissue subject to combined shear and axial deformations. This method gives consistent nonlinear elasticity estimates irrespective of the type of applied deformation, with a reduced bias in NLSM values to 6-13%. The method combines quasi-static strain imaging with Single-Track Location-Shear Wave Elastography (STL-SWEI) to generate local estimates of axial strain, shear strain, and Shear Wave Speed (SWS). These local values were registered and non-linear elastograms reconstructed with a novel nonlinear shear modulus estimation scheme for general deformations. Results on tissue mimicking phantoms were validated with mechanical measurements and multiphysics simulations for all deformation types with an error in NLSM of 6-13%. Quantitative performance metrics with the new compound-motion tracking strategy reveal a 10-15 dB improvement in Signal-to-Noise Ratio (SNR) for simple shear versus pure compressive deformation for NLSM elastograms of homogeneous phantoms. Similarly, the Contrast-to-Noise Ratio (CNR) of NLSM elastograms of inclusion phantoms improved by 25-30% for simple shear over pure uni-axial compression. Our results show that high fidelity NLSM estimates may be obtained at ~30% lower strain under conditions of shear deformation as opposed axial compression. The reduction in strain required could reduce sonographer effort and improve scan safety.


Assuntos
Técnicas de Imagem por Elasticidade , Elasticidade , Movimento (Física) , Imagens de Fantasmas , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...